Credit: BellaSeno

A team at the Hannover Medical School, Clinic for Trauma Surgery, led by Prof. Dr. med. Philipp Mommsen successfully used a 3D-printed resorbable scaffold in critical-size large segmental radius bone defect.

The scaffold was produced by medtech company BellaSeno, which uses AM in its production process. The company’s MDR-certified manufacturing platform is designed to meet the requirements of medical scaffolds ranging from soft tissue to bone and enables the production of both custom-made and off-the-shelf sterile medical implants.

The surgery performed by the healthcare professionals aimed to reconstruct a 14 cm segmental bone defect of the radial shaft after a third-degree open infected fracture due to traumatic gunshot injury.

Prior to his treatment at Hannover Medical School, the patient had undergone eleven surgeries with soft tissue and bony debridement to obtain secondary wound closure, while the radial fracture was only stabilized by a ring fixator. Following six further operations and systemic antibiotic treatment to achieve bacterial eradication of the surgical field, bone reconstructive surgery was performed at Hannover Medical School using BellaSeno’s resorbable scaffold in conjunction with an autologous bone graft from the medullary cavity of the femoral bone.

The scaffold is based on Resomer®, a biodegradable polymer platform developed by Evonik. The surgery succeeded and after three months, the patient showed timely bony integration and had adequate elbow function without any signs of wound healing disorder. Also, no more clinical signs of infection were apparent.

The scaffold was designed by BellaSeno as a customized cage to perfectly match the patient’s anatomy and to ensure a secure hold of autologous bone graft (RIA material) in the large void. To enable proper internal vascularization by the positioning of an arteriovenous loop or a central vascular pedicle during reconstructive surgery certain design features were included to allow the placement of such a fragile structure inside the scaffold.

To manufacture the scaffold, BellaSeno uses its proprietary AI-driven additive manufacturing facilities based on a “no-touch approach.” The cage consisting of an inner and outer support frame with a basic and a locking part is made from completely bioresorbable, high-quality, GMP-grade Resomer® polycaprolactone (mPCL) and provides osteoconductive properties.

During surgery, the team decided to use a vascular pedicle to ensure immediate internal vascularization, which was placed and fixed through an aperture located on the outer cage frame. The procedure was carried out in October 2023.

As the example of the 46-year-old patients demonstrates, sophisticated solutions to treat large bone defects are scarce. BellaSeno’s scaffold enabled us to conduct a new surgical technique for graft vascularization by embedding a vascular muscle arcade directly into a patient-specific, 3D-printed bioresorbable scaffold,” said Prof. Dr. med. Philipp Mommsen, Managing Senior Physician, Clinic for Trauma Surgery at Hannover Medical School and lead author of the paper. “This surgical procedure represents an innovative and promising approach for the restoration of extensive bone defects. As we see an increasing number of such catastrophic and very difficult to treat defects we are facing a rapidly growing medical need to reconstruct such injuries.”

Remember, you can post job opportunities in the AM Industry on 3D ADEPT Media free of charge or look for a job via our job board. Make sure to follow us on our social networks and subscribe to our weekly newsletter : FacebookTwitterLinkedIn & Instagram ! If you want to be featured in the next issue of our digital magazine or if you hear a story that needs to be heard, make sure you send it to contact@3dadept.com