Engineered materials company Uniformity Labs (Uniformity) announces the availability of its UniFuse™ AlSi10Mg Aluminum powder and optimized parameters for L-PBF printing at 50um and 90um layer thickness.
This follows the previously announced release of UniFuse™ AlSi10Mg and optimized parameters for 30um layer thickness printing. UniFuse™ AlSi10Mg powder and processing parameters at each layer thickness are optimized for best-in-class material properties and repeatability simultaneous with the highest throughput printing across L-PBF platforms. The UniFuse™ AlSi10Mg powder and optimized print processes have been used to create parts across various L-PBF platforms at much greater speed and improved properties relative to comparably priced competitor materials.
Uniformity Labs has now designed High-Performance Scanning parameters for printing UniFuse™ AlSi10Mg at 50um and 90um layer thickness in platforms with lasers exhibiting maximum power between 400W and 700W. Uniformity materials and High-Performance Scanning deliver superior properties at an approximately 75% increased build rate compared to competitors’ same layer thickness scan strategies. This throughput improvement is typical for UniFuse™ AlSi10Mg builds.
Higher bed and tap densities with particle size distributions optimized for uniform, repeatable printing at the highest throughput enables Uniformity powders to deliver improved mechanical properties and consistent performance across the build bed, even printing at thicker layers with high laser powers.
“With UniFuse™ AlSi10Mg we’re able to deliver best-in-class mechanical properties, surface finish, printing yield, and part reliability with substantially increased throughput printing at 50um and 90um layer thickness, and when using higher power lasers,” said Uniformity founder and CEO Adam Hopkins. “This is significant for advancing AM as a viable pillar for industrial manufacturing and shows that our technology and process deliver on the promise of no compromise additive manufacturing.”
Uniformity Labs is addressing the industry challenge of achieving serial production in AM with the development and production of its highly advanced ultra-low porosity metal powder feedstock. Currently in production under the product brands UniFuse™ (for L-PBF) and UniJet™ (for binder jetting), and with its High-Performance Scanning strategies, Uniformity Labs has improved the ability to produce high-quality parts repeatedly and at scale – allowing additive manufacturing to become an increasingly better-established serial production tool.
This announcement follows the recent availability of a range of steel, aluminum, and titanium powders under the brand UniFuse™ for L-PBF and UniJet™ for binder jetting, with many others nearing availability.
AlSi10Mg AS Printed Mechanical and Density Information
At a glance, mechanical and density properties are listed below:
- 50um layer thickness, 400W
- > 99.7% density, 1.4 times the throughput with superior properties compared to competitor 60um layer thickness printing
- Ultimate Tensile Strength (Rm z) – 426 ± 8 MPa
- Ultimate Tensile Strength (Rm xy) – 439 ± 4 MPa
- Yield Strength (Rm z) – 242 ± 2 Mpa
- Yield Strength (Rm xy) – 271 ± 4 MPa
- Fracture Elongation (Rm z) – 4.7 ± 0.4%
- Fracture Elongation (Rm xy) – 7.0 ± 0.3%
- Surface roughness in z direction (um) 5.1 ± 1.4
- 90um layer thickness, 400W
- > 99.5% density, with properties most similar to competitor 60um layer thickness printing and far superior to competitor 80um layer thickness printing, with 1.6 times the throughput compared to competitor 60um layer thickness printing
- Ultimate Tensile Strength (Rm z) – 371 ± 13 MPa
- Ultimate Tensile Strength (Rm xy) – 398 ± 5 MPa
- Yield Strength (Rm z) – 238 ± 2 Mpa
- Yield Strength (Rm xy) – 254 ± 2 MPa
- Fracture Elongation (Rm z) – 3.2 ± 0.3%
- Fracture Elongation (Rm xy) – 4.9 ± 0.3%
- Surface roughness in z direction (um) 14 ± 0.7
- 90um layer thickness, 700W
- >99.7% density and 1.8 times the throughput and comparable properties to competitor 700W platform printing at 60um layer thickness.
- Ultimate Tensile Strength (Rm z) – 401 ± 9 MPa
- Ultimate Tensile Strength (Rm xy) – 420 ± 6 MPa
- Yield Strength (Rm z) – 230 ± 3 Mpa
- Yield Strength (Rm xy) – 247 ± 1 MPa
- Fracture Elongation (Rm z) – 4.4 ± 0.4%
- Fracture Elongation (Rm xy) – 6.8 ± 0.8%
- Surface roughness in z direction (um) 15 ± 0.7
Remember, you can post job opportunities in the AM Industry on 3D ADEPT Media for free or look for a job via our job board. Make sure to follow us on our social networks and subscribe to our weekly newsletter: Facebook, Twitter, LinkedIn & Instagram ! If you want to be featured in the next issue of our digital magazine or if you hear a story that needs to be heard, make sure you send it to contact@3dadept.com